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1. INTRODUCTION 

In this article, we propose a coefficient of 
multiple rank association 

= 

for describing a specific aspect of the associa- 
tion between a dependent variable Y and a set of 

independent variables (X(1) ,X(2),...,X(k)), when 
the available statistics consist of rankings on 
these variables for a sample of observations. In 
the next section TYX is defined as a generali- 

zation of Kendall's tau for two variables, in 
that it is based on the orderings for pairs of 
observations on each of the variables. The 
measure may be interpreted as a weighted average 
of the absolute values of the Kendall's taus 

between Y and each over sets of pairs with 

fixed orderings on = 1,2,...,k }. In addi- 
tion, has a proportional reduction in error 

interpretation based on predicting pairwise 

ordering on Y using pairwise orderings on }. 

The extent of the increase in value of T as YX 
additional independent variables are added to the 
system is thus a measure of the improvement in 
predictive ability of these pairwise orderings on 
Y, for the given prediction rule. An additional 

coefficient T2), based on a different prediction 

rule, is also considered and seen to be more 
useful that when k = 2. 

In Section 3, the coefficients are genera- 
lized for application when there are some tied 
ranks, or the variables are ordinal caregorical 
in nature. The measure TeX is defined in terms 

of all pairs of observations untied with respect 
to Y, and is seen to have similar, properties as 
the coefficient defined for the full -rank 

(no ties) case. 

Examples of the calculation of these 
measures are given in a corresponding technical 

report (see Agresti (1976)). Also, asymptotic 
sampling distributions are considered in the 
report, as well as comparisons with other ordinal 

measures of multiple association which have been 
formulated. 

2. MULTIPLE TAU COEFFICIENTS 

The multiple tau coefficients which we shall 
define in this section are based on a generali- 
zation of the proportional reduction in error 
interpretation for the absolute value of Kendall's 
tau (denoted by for the population value) 

between two variables Y and X (see, e.g., Ploch 

(1974)). For this bivariate case, let C and D 

represent the numbers of concordant and discordant 
pairs of observations, and suppose that there are 
no tied pairs. 
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If one were to predict at random for each of 
the n(n - 1)/2 pairs of observations whether that 
pair was concordant or discordant (i.e., for each 
pair, predict concordance with probability 1/2, 
predict discordance with probability 1/2), the 

expected number of prediction errors would be 
(C + D) /2 = n (n - 1) /4. If, on the other hand, one 
knows that TYX >0 and predicts concordance for 

each pair, the number of errors would be D. This 
results in a proportional reduction in error of 

n(n -1)/4 - D C -D 
n(n - 1)/4 n(n - 1)/2 

(2.1) 

Similarly, if one knows TYX < 0 and always pre- 
dicts discordance, the proportional reduction in 
error is 

D -C 
n(n -1)/2 - 

One could interpret then, as the propor- 

tional reduction in error which results from 
predicting the ordering of pairs of observations 
on Y, based on having knowledge of the orderings 
of the pairs on X (and using the rule whereby 
the majority ordering is always predicted), 
relative to possessing no information about the 
orderings on X. 

2.1 Definition of 

Now, suppose that we wish to describe the 
association between a dependent variable Y and a 

collection of independent variables X= (X(1),.. 

..,X(k)). We shall next construct a similar type 
of coefficient with predictions of the ordering 

on Y based on the orderings on the v= 1,.. 
..,k) for each pair of observations. In this 
section, for simplicity, we shall assume that 
there are no tied pairs with respect to any of 
the variables. 

Let (Y ..., Yn) , (Xi1) .. ) 
... , 

..,X(k)) denote the rankings on Y,X(1), 
n 

for n observations in some sample, and for a pair 
of observations (i,j), let 

(XÇ _X. «,k (2.2) 

where S is the sign function 
SEu] = -1, u <0 

0, u =0 
1, u >0 

Also, denote (Sl(i,j),...,Sk(i,j)) by S(i,j), 

and let 

A(Ó) = {(i,j): S(i,j) =S }. 



For example, A(1,1,...,1) is the set of pairs 
of observations which are simultaneously concor- 
dant between Y and each , = 1,...,k. If 
the pair of observations (i,j) is in A(6), then 

that pair is Y- concordant (discordant) if 
6v= 1 (6v= -1). Notice that the 

6= v = 1,...,k} create a partition of the 

n(n - 1)/2 pairs of observations. Let 

Dk= { {Sl,...,6k): v =1.. .k },(2.3) 

and denote by N(6) = N(S ,..., ) the number of 
pairs of observations in the set A(6), so that 

N(6) = - 1)/2 
k 

Now, for each element 6 of D , A(6) U A( -6) 
is the set of pairs of observations with a 

certain fixed ordering on the 1,...,k 
namely 

-X concordant if 6 = 1 
u w 

- discordant if 6 6 =-1, 
u. w 

lsuswsk. 

There are several ways in which one could form 
predictions for the Y ordering for pairs in this 
set. The prediction rule for the coefficient to 
which we shall devote primary attention speci- 
fies that for each set A(S) UA(-6) of pairs with 

fixed orderings on the one should predict 
ordering on Y such that 

S =6 if N(6) 2N( -6) 

S(i,j) = -6 if N(6) <N( -6) (2.4) 

That is, if the majority of pairs in A(6) U A( -6) 

are Y- X(v) concordant (discordant), predict the 
orderings on Y for pairs in this set correspon- 

ding to concordance (discordance). 

According to this prediction rule, the 
number of prediction errors for pairs in A(6) U 
A( -6) is min[N(6),N( -6)]. On the other hand, 

random predictions of Y- concordance or 
discordance (with probability 1/2 for each) for 
pairs in A(6) U A( -6) would correspond to an 
expected number of errors of [N(6) +N(-6) ]/2. 
When predictions are considered over all pairs 

in all such sets with fixed ordering, the 
proportional reduction in error obtained from 

utilizing knowledge of ordering on the is 

LN(6) +N(-6) ]/2 - min[N(6),N(-6) ] 
k k 

- 
4N(6) +N(-6)3/2 

k 

= n(n-1)/2-i:min[N(6),N(-6)] 
k 

n (n - 1) /2 

IN(6) -N(-6)1 

n(n-1)/2 

The factor of occurs here and in some subse- 
quent formulas due to the fact that both 
IN(6) - N( -6) and IN( -6) -N(6)1 occur in these 
sums when Dk is used as the index set. 

Notice that be written as 

a(d) IN(d) -N(-6)1 
Y. k 

N(S) +N(-6) 
(2.6) 

N(6) 
where X(S) is the proportion of the n(n 1)/2 

n(n - 1)/2 pairs of observations which are in 
A(6). Letting 

t(Ô)=[N(6) - N( -S) ] /[N(6) +N( ], 

we see that 

t. (X(6) + -6)) It(6)1 (2.7) 

is a weighted average of the absolute values of 
Kendall's tau type measures calculated within 

each set A(6) UA(-6) of orderings on the }. 

Since the joint orderings of the are fixed 
within A(6) UA(-6), It(6)1 is in fact the abso- 
lute value of Kendall's tau between Y and each of 

the (v = 1,...,k), for that set of pairs. 

The calculation of a coefficient such as 
t is based typically on a sample from some 
re ar or conceptual population of interest. 
Letting P(6) denote the proportion of pairs of 
observations in A(6) in this population, the 

corresponding population value of this coefficient 
is 

Ty,*= IP(S) -P( -6) I. 

Alternatively, let 

DM= {S: P(S) >P( -6) }, Dm= {6: <P(-6) }. (2.9) 

(2.8) 

Then, for simplicity, we could rewrite the popu- 
lation coefficient as 

Pm= [P(6) - 

where Pr[S(i,j) in DM] and 

M 

(2.10) 

Pm = Pr[S(i,j) in Dm] 

for a randomly selected pair (i,j). We shall 

refer to the set of pairs indexed by DM as those 

with majority ordering on Y with respect to 

and by Dm as those with minority ordering 

on Y with respect to }. Thus is also 

similar in structure to Kendall's tau in that it 

may be interpreted as the difference in the 

probabilities of two types of pairs of observations 

2.2 Properties 

We shall next consider some of the basic 

properties of It is clear from the defini- 

(2.5) tion that is invariant under order -preserving 

transformations on any of the variables. In the 
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simple bivariate case, 

IN(1)- N(-1)I IC -DI 
tYX n(n- 1)/2 n(n -1)/2 (2.11) 

equals the absolute value of Kendall's tau 
between Y and X, the difference between the 
proportions of concordant and discordant pairs 
of observations. In the trivariate case, 

(1) = {IN(1,1) +N( -1, -1) + 

- N(-1,1)I}/n(n - 1)/2 

2 max +N(1, -1)) - (N( 
n(n- 1) 

+N(-1,-1))j, (N(1,1) +N(-1,1) ) 

- (N(1,-1) +N(-1,-1))1} 

= (2.12) 

The behavior of t becomes less trivial 
when the number of independent variables k 
exceeds two, as the simultaneous predictive 
power available from may exceed 
that of the one most strongly associated with Y. 
In general, tY.X is monotone increasing as the 

set of independent variables increases in size. 
To see that +1), 

we need only note that the partition of pairs 
into sets 

+1) 
U A(- 61....,-ók 

with similar orderings on the = 1,...,k +l} 

is a subdivision of the partition 

U A(- 61,.... -6k) and thus IN(61,...,6k) 

- N(- = DE IN(61,...,6k,1) +N(1... 

- N(- - N(- 6k, -1)1 

N(61,...,6k,1) -N(-61,...,- 6k,-1)I 
k 

+ 

=DE IN(61,...,6k 
+1) +1)I 

k +1 

Notice that X(k) = ty.x(1), +l) 

if and only if for each choice of 
either 

-1) 

and 

or (2.13) 

N(- 61,...,- -1) 

and N(Sl,...,6k,-1) N(- 51,...,- 6k,1); 

that is, if the refinement in the partition of 

pairs by adding X(k 
+l) 

to the system does not 

result in a change in the predictions of 
concordance or discordance for any of the pairs, 
v= 1,...,k. In particular, if ItX(R)X(k +l)I= 1 

for some (1 )c), then the partition is 
unchanged and ty.X (1) (k) ty. (1), (k +l) 
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2.3 A Coefficient Based on a Different 
Prediction Rule 

A rather striking property of is that 

for k= 2, the reduction in prediction error equals 
just that corresponding to the more strongly 

associated of the two. Thus, is a 

mathematically convenient but practically trivial 
measure when there are only two independent vari- 
ables. The reason for this behavior lies with 
the prediction rule employed in formulating the 
coefficient. The rule of "predicting the 
majority ordering on Y with respect to the 

is a very simple one which leads to an 
easily interpretable coefficient. However, there 
is nothing unique about it, and more complex 
rules are necessary to produce a non- trivial 
measure when k= 2. 

To formulate alternative coefficients of a 
nature similar to one need only change the 

prediction rule. For example, suppose that a 
"proportional" prediction rule is utilized. That 
is, for a pair of observations in A(S) U A( -6), 
predict that 

S(i,j) = 6 with probability NO)/(N05)+N(-6)) 

S(i,j)= -6 with probability N(- 6)/(N(6) + N( -6)). 
(2.14) 

Then, the expected number of prediction errors 
for all such pairs in A(S) U A( -6) is 

2N(6)N(- 6) /(N(6) +N(-6)) , and considered over all 

such sets with fixed orderings, the pro- 
portional reduction in error using this rule is 

n(n - i) /2 - N(6)N(- 6) /(N(6) +N( -6) ) 
t(2) 

YX n(n -1)/2 
(2.15) 

It is easily verified that when k= 1, this 
coefficient reduces to the square of Kendall's 
tau (see Ploch (1974)). As the set of independent 

variables increases in size, remains con- 

stant if the relative proportions used in the 
prediction remain unchanged. For example, 

( 
2y. x(1;...,X(k)= 

t(2 
t +1) if for all 

in Dk 

N(61,...'6k) -1) 

N(- 6k) N(- N(- 

(2.17) 

In particular, > 

t(2y) .X(2)1 unless 

N(1) N(1,1) _N(1, -1) 
N( -1) N( N( -1,1)' 

Thus, when k= 2, t 
(2) 

is an especially 

useful measure of multiple rank association. For 

k> 2, can be used as a supplementary 

measure to However, it does not have quite 



as simple an interpretation as its 

value may seem somewhat artificial to the user, 
since it is naturally comparable to the squared 
rather that the unsquared Kendall's tau values. 
In essence, predictions based on this rule can 
result in no larger a reduction in error than 
those based on the rule previously described. 

Of course, t(2) could be used in comparison 

with the tau values, although then this coeffi- 
cient lacks an interpretation. Also, the asymp- 
totic moments and sampling distribution of 

YX seem to be difficult to derive. 

3. A MULTIPLE TAU COEFFICIENT FOR 
ORDINAL CATEGORICAL DATA 

Tied pairs of observations would typically 
exist for most systems of variables in the 
social and behavioral sciences, where variables 
are commonly measured on ordinal categorical 
scales. If only a small proportion of pairs of 
observations are tied on at least one of the 
variables, one could continue to use tYX as 

defined in the previous section (tied pairs 
being omitted in the numerator). However, this 
results in a reduction in the potential magnitude 
of the measure, which becomes substantial as the 
proportion of tied pairs increases. For example, 
if the dependent variable is dichotomous with 
proportions .2 and .8 of observations in the two 
categories, the maximum possible value for 

would be .32 (the proportion of pairs untied on 
Y) regardless of the distribution of ties among 
the independent variables. 

3.1 Definition of tX 

To permit a maximum value of one and to 
ensure that the value does not decrease as inde- 
pendent variables are added to the system, one 
could base the coefficient on those pairs untied 

on Y and on at least one 
X(V), 

but standardize 
in the denominator according to the number of 
pairs untied on Y. That is, for óv= -1,0 or 1, 

V = 1,...,k, let 

{(i,j): and = (3.1) 

and let N(S) be the number of pairs of observa- 
tions in A(5). Let T} denote the number of pairs 
tied with respect tot; i.e., if there are a0 

distinct values of Y with n. observations 
a 

tied at the i -th level, then = - 1)/2. 

i=1 

Then, óv=-1,041, V= ,k} is a parti- 

tion of the n(n - 1)/2-Ty pairs untied on Y, and 
A(S) is again the set of pairs with a 

fixed particular ordering on the Letting 
= {(Sl,...,Sk): = -1, O, or +1, V= 1,...,k, 

at least one (3.2) 

we define 
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t' YX n(n- 1)/2 Ty 

Notice that tX be rewritten as 

S E 

(3.3) 

= (3.4) 

2rn( 1) 

1 (n - 1) 
2 2 

That is, tX is the proportional reduction in 
error of predictions of the ordering on Y (for 

those pairs untied on Y) obtained by predicting 
majority ordering based on ordering of the 

r, relative to predicting randomly. Of 
course, when all =0, predictions in effect are 
also made randomly since the provide no 
predictive information, resulting in an expected 
number of errors of N(0,...,0)/2. 

Alternatively, t,X be written as 

E - 
t' YX Dk N(S) +N( -S) 

= (S) + a( 
I 
t (6) 

D' 

N(ó) 
where A(S) - is the proportion of 

the pairs of observations untied on Y which are 
in A(S). Thus, tX be interpreted as a 

weighted average of-the absolute values of the 
Kendall's taus within each set A(S) U A( -S) of 

orderings on the }, where a weight of 
N(0,...,0) 

(3.5) 

n(n - 1)/2 - TY (the proportion of those pairs untied 

on Y which are tied on all X (v)) is given to a value of 
0 = N(0 ..... 0) -N(0,...,0). Here, It(S)I is the 
absolute value of Kendall's tau between Y and 

each of the X(v) such that #O, within the set 
of pairs A(S) U A( -S). 

If P(S) denotes the proportion of pairs of 
observations in A(S) and p. denotes the propor- 
tion of pairs tied on Y atlthe i -th of sets 

of ties on Y in some population of interest, then 

the population value of the coefficient tX is 
-P(-6)1 

D' 

1- E 

tP(S) 

1- p2 

i=1 

(3.6) 



where DM= {d in D': P(6) > P( -6) }. 

Alternative coefficients could again be 
formulated based on different prediction rules. 
For example, an extension of the proportional 
prediction rule discussed in the last section 
yields the multiple measure for ordinal cate- 
gorical data, 

YX (3.7) 

[n(n-1)/2-Ty] -2 E N(6)N(-6)/(N(6)+N(-6)) 
U 

(0,...,0) 

n(n-1)/2 - 

3.2 Properties 

Clearly, is invariant under strictly 

order preserving transformations on any of the 
variables. When there are no tied pairs with 
respect to any of the variables, reduces to 

the coefficient discussed in Section 2. In 

the bivariate case, tYX reduces to Somers' 

(see Somers (1962)), a well -known asymmetric 
ordinal measure of association. When k= 2, 

is likely to be not much larger than 

max but there is not 

necessarily equality here due to the additional 
tribution in the numerator of pairs tied on 
but not on X(2) and Y, or of pairs tied on 

X(2) but not on X(1) and Y. Again, though t' 

if of primary interest when k 3, and a coeffi- 
cient such as t(2 is likely to be of greater 

practical use when k= 2. 

With the addition of 
+1) 

to the set of 
independent variables, 

t' (1)(k) +1), 

since the denominator remains constant and the 
numerator can not decrease when the partition of 
pairs {A(6) U A( is refined. 
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For additional properties and a numerical 
example, see the related technical report on 
these measures (Agresti (1976)). 
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